
released. Moreover, a band appears in the IR spectrum that corresponds to the carbcnyl 
group C=O, which indicates the destruction of the irradiated PVTMS and its oxidations. With 
an increase in the radiation dosage the carbonization of the polymer becomes signifJcant, 
and this brings about a noticeable change in the color of the film from light yello~ in 
the case of a radiation dose of 2"i0 Is cm -2 to dark brown for the case in which D = 10 l~ 
cm -2 Thus, modification of the polymer ion-implantation materials, given optimum ~adiation 
regimes, for appropriate ion-polymer systems, will yield a significant improvement in the 
gas-separation properties and it exhibits a number of advantages over other methods. 
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STUDYING THE COEFFICIENT OF THERMAL CONDUCTIVITY FOR LIQUID METALS 

A. I. Veinik, G. V. Markov, and ~. B. Matulis UDC 536.221 

We discuss a method for an experimental study of the coefficient of thermal 
conductivity, specific heat capacity, and the specific electrical resistance 
of metals in the solid and liquid states, as well as the data that we have 
obtained with respect to the indicated properties of Bi, In, Cd, and Pb. 

At the present time the coefficients of thermal conductivity for liquid metals have 
not been adequately studied [i]. This applies particularly to alloys. Such a situation 
can be ascribed to the limited development of reliable experimental methods, to the ciifficul- 
ties of carrying out such studies, particularly at high temperatures [2], and to the absence 
of sufficiently well-founded methods of calculating these properties [3]. 

In the present paper we examine a method intended for the experimental study of the 
coefficient of thermal conductivity ~, as well as of the specific electrical resistar~ce 
p, and the specific heat capacity c~ for metals and alloys in the liquid and solid states. 
The method is based on one covered in [4-6] for the study of the thermophysical propE~rties 
of metals in the solid state, and it essentially involves the following. Let a liquJd metal 
of mass m be contained within a metal tube of length s and these two metals not reacting 
with each other chemically. We will assume that the cross-sectional area of the oriiice 
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is equal to Fc, the cross-sectional area of the tube walls is given by Fct and that its 
mass is m t. We will mount heaters at the ends of the tube and we will place the entire 
"tube-metal-heater" system into a vacuum chamber with a wall temperature T o and a wall area 
considerably greater than the side surface F s of the tube. 

By means of the heaters between the ends of the tubes we set up a small., temperature 
difference AT = Tin - Tou t . A constant electric current of strength I~[I) is passed through 
the tube, initially "n one (I) and then in the reverse I.(II) (II) directions In -rincinl o 

[I) ~ (II) i . ~ �9 ~- v ~, 
I~ I~ . The magnltude of the current then changes slightly and it is again made 
to flow in the forward and reverse directions. Having analyzed the scheme of these experi- 
ments, we can state that the following flows of heat are present in the "tube-metal" system 
in the steady-state regime, and namely: the flow of heat entering the system from the hotter 
heater; the Joule heat flow; the Thomson heat flow generated or absorbed by the system in 
dependence on current direction; the flow of heat radiated by the tube to the ambient medium; 
the flow of heat being discharged from the system to the less-heated heater. When the cur- 
rent strength is altered, the magnitudes of all of the heat flows are changed, as well as 
the mean temperature of the system. 

Let the "tube-metal" system be heated to some average temperature T and let the tempera- 
ture difference across the ends of the tube be equal to AT. We will assume that the coeffi- 
cient of tube thermal conductivity X t and its specific heat capacity c t are known and change 
little in the temperature interval (T - AT, T + AT), and also that there exists an ideal 
thermal contact between the tube and the metal being studied. Let us examine the heat-balance 
equation of the "tube-metal" system in the steady-state regime, when T(t)-const. For a 

of I~ (I), when the current passes through the system in direction (I), current strength 
where we will assume that we are dealing with a Thomson flow of heat, the equation assumes 
the form 

--(~'ee)ef f . + U(1)l~l) -'~ - %f f  ~ r l ~  I) ~-- 8,t>,F~lJ [(T+)4a - - T ~ I -  ( e)eff---~-- X T OU( ( l )  
in 

Here 

1 l 
(ZFo)ef f = gFc q- kt:F~:; (T+/a = T J' iT+ (x)l~dx" (2)  

0 

If we reverse the direction of current passage, 
in the steady state will be as follows: 

dT- I U(n)I~n, .,,.,OH)_ dT- [ - -  (~Fe)eff ~ r.  2c - -  @elf •1 , ,  ,-- g t Fsz [(T-)4a-- T 41 - -  (kFe) ef f -~--  x Tout 
i n  

where 

(T - / a  = -~ IT- (x)l ~ dx. 

the heat-balance equation for the system 

(3) 

Here 

From Eqs. (i) and (3) we will then obtain 

= et FsJ(T~--Tg)" (4) 

dT+ I q_ dT- I j 2  dT I ", dT+ Iroutq- dT- I = 2  d ~ x  rout  
dx Tin dx r i dx t in  dx ~ rou t 

dx rout dx Tin 

U(I)I$ ') -{- U(n)I$ n) = 2UI,~. 
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We have neglected the term Oeff&T(l@ (I) - I~ (II)) in Eq. (4) because of its smai.lness 

relative to the other terms. 

We will slightly alter the magnitude of the current strength so that it would not lead 
to any significant change in the thermophysical properties of the system and we will set 
it equal to Iql. From the heat-balance equation for the two current directions we will 
obtain an equation such as (4): 

Here 

( dTt 
(~'Fc) off ~ I -~- UII* 1 = 8't'Fsff (r~ --To4). 

/ 

(5) 

dx T i dx Tin dx" Tin dx Tout + dx Tout =: 2 ~ Tout 

dT1 ] dTl I = 8 ( d T 1 )  +4 (T71)Ja 2T~; 
dx rout dx ~n \ dx 7; ( T , ) , a . +  = 

l 
1 t 1 S[T-(x)Pdx; (r+)4a = ~ ! [T~" (x)p dx; (rT): a = ---{ o 

U(Or(1) U~n) r(H) I J,1 + ~,1 = 2Uff,t. 

It follows from Eqs. (2), (4), and (5) that 

= U~I,~ - -  ~IUI, 
( dT1 

%t F7 . (6) 
Fo 

8~ = Fsa(T~__T~) , (7) 
4 r TI - -To  

= T~--T  ~ �9 (8) 

When the current strength is changed the temperature of the "tube-metal" system is 
changed. For the initial instants of time after this change, the heat-balance equation 
has the form 

d T  [ = U~I ) ]~)  __ U(I ) /~I )  
(cpm + C, t m, t ) - ~ -  It=o ( 9 ) 

Hence we find that the specific heat capacity for the metal being studied can be found from 
the expression 

U ( I )  t(1) t r(1) r(I) d +  [ 
1 IKbl--~ Jqp - -c tm,  t 

t--0 

cp = m, dTdt, ]t=o " (i0) 

We can treat the "tube--metal" system as two resistances connected in parallel. The 
specific heat resistance p for the metal being investigated was calculated by means of the 
following formula: 

Yc (ii) P : + I $ ' ) I  

U ( D + U ( U )  P't 

Thus, if we know the coefficient of thermal conductivity A t for the tube and its speci- 
fic heat capacity ct, on the basis of formulas (6), (I0), and (ii), proceeding from the ro- 
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Fig. i. Change in the specific electrical 
resistance of bismuth, indium, lead, and 
cadmium in melting. 

suits of the experimental measurements, we can find the coefficient of thermal conductivity 
A, the specific heat capacity Cp, and the resistivity p for the metal being studied, regard- 
less of whether it is in the solid or liquid state. 

To verify the validity of the method, we set ~p an experimental unit on which we studied 
the coefficient of thermal conductivity for pure Bi, In, Pb, and Cd in the liquid and solid 
states. The studies involved the use of tantalum tubes s = i00 mm in length, with an outside 
diameter of 6 mm and an inside diameter of 4 mm, in a vacuum no less than i.i0-4-i.i0 -5 
mm Hg. As demonstrated by actual practice and calculations, for these dimensions of the 
"tube-metal" system the quantity AT should not exceed 5-7 K, while the change I~(I) - 
l~(ll)J ~ 2-3 A. In this case, the error in the measurement of the coefficient ~f thermal 
conductivity % does not exceed 15-20%, the error in the calculation of the specific heat 
capacity Cp is no greater than 7-15%, and that for the resistivity p does not exceed 2-5%. 

Let us examine the results from our investigation into the quant: A and p for pure 
Bi, In, Pb, and Cd in the liquid and solid states. It follows from t] hat for Bi, whose 
melting point is 544.3 K [7], the thermal conductivity A at 523 K is t~_ to 8.5 W/(m.K), 
while at 567 K it is equal to 15.5 W/(m.K). If we neglect the functions A(T) in the solid 
and liquid states, then for Bi the change in the thermal conductivity at the melting point 
is As/A s = 0.55. According to [8], for Bi we have As/A E = 0.49. For In we find that at 
T = 402 K, when In is in the solid state, its thermal conductivity A s = 40.1 W/(m.K). With 
T = 435 K for liquid In we have As = 37.5 W/(m.K). Consequently, here As/X ~ = 1.07. It 
follows from [i] that for In, As/% s = 1.09. Such excellent agreement in the results was 
also obtained for Pb. Thus, with T = 580 K its coefficient of thermal conductivity A s = 
30 W/(m.K), while for T = 608 K, As = 16.6 W/(m.K). Then As/A s = 1.81, which differs only 
insignificantly from the data derived in [i], where As/% s = 1.85. Thus, for Bi, In, and 
Pb we have found good agreement in the experimental data. A somewhat greater divergence 
in the data is noted for Cd. Thus, according to our data, with T = 580 K, A s = 76.6 W/(m.K), 
while with T = 605 K, o~ = 34.7 W/(m.K), and consequently, for Cd the ratio As/A s = 2.21. 
According to the data presented in [i], this ratio is equal to 2.5. 

Figure i shows the results from an investigation into the resistivities of Bi, In, 
Pb, and Cd in the solid and liquid states. The temperature intervals have been chosen near 
the melting point. Comparison of the derived functions p(T) in the solid and liquid states 
with the data from [i] shows excellent agreement. 

Thus, proceeding from the results obtained in our study of the specific electrical 
resistance and the coefficient of thermal conductivity for Bi, In, Cd, and Pb in the solid 
and liquid states, we can draw the conclusion that our original assumptions and the calcu- 
lation formulas of the method are valid. 

NOTATION 

A, coefficient of thermal conductivity, W/(m.K); p, specific electrical resistance 
(resistivity), ~'m; Cp, specific heat capacity, J/(kg'K); m, mass of the metal being studied, 
kg; s tube length, m; Fct , cross-sectional area of the tube walls, m2; m t, tube mass, kg; 
T o , wall temperature o~ vacuum chamber, K; F s, area of the side surface of the tube, m2; 
Tin, Tout, temperatures of the more and less-heated ends of the tube, K; AT, temperature 
drop across the tube ends, K; I# (I), I~ (II), strength of current passing through the "tube- 
metal" system in the forward (I) and reverse (II) directions, A; t, time, sec; T+(x), T-(x), 
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temperature distribution along the system when the Thomson heat is either released or ab- 
sorbed, K; U (I), U (II), voltage drops for two current directions, V; o, Stefan-Boltzmann 
constant, W/(m2"K4); Oef f, effective Thomson coefficient for the "tube-metal" system, V/K; 
st, emissivity of the tube. Superscripts: t, tube; subscripts: eff, effective; ~, ~i, 
current magnitudes; c, cross-sectional area; s, side surface. 
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. 

. 
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FORMATION OF A LAYER OF A LIQUID AS IT IMPINGES 

ON A HORIZONTAL PLANE 

G. R. Shrager and I. V. Shcherbakova UDC 532.62 

We have conducted a numerical study of the spreading out of a liquid over a 
horizontal plane, with the liquid, in this case, running off over the surface 
of a semiinfinite vertical cylinder. 

When a liquid impinges on a horizontal surface it spreads out and as a result a Liquid 
layer of a specific thickness is formed on the surface. A characteristic unique feat lre 
of the flow achieved in this case is the presence of a free surface. The flow of a viscous 
liquid over a horizontal surface with a relatively small layer thickness has been studied 
in a number of papers [1-6]. Attempts have been made numerically to solve the proble1~ of 
the spreading out of a column of liquid under the force of gravity [7-9]. In this pa:=ticu- 
far study we examine the axisy~mnetric motion of a viscous liquid over a horizontal plane, 
with the liquid, in this case, running off over the surface of a semiinfinite verticai~ cylin- 
drical rod, impinging on a horizontal plane. The motion is assumed to be creeping, so that 
the inertial forces may be regarded as negligibly small in comparison to the viscosity forces. 
The capillary forces are assumed to be small in comparison to the viscosity and gravitational 
forces, and thus are also not taken into consideration. 

i. Formulation of the Problem. In a cylindrical coordinate system the system of equa- 
tions describing the flow, in conjunction with the above assumptions, has the form 

FAu-- ozOP - - p g = 0 ,  ~(Av r zv ) orOP = 0 ,  A p = 0 .  (1)  

The t h i r d  of  the  e q u a t i o n s  in  (1)  i s  a consequence  o f  t he  f i r s t  two and o f  t h e  c o n d i t i o n  
o f  i n c o m p r e s s i b i l i t y .  

The c o n d i t i o n s  s p e c i f y i n g  an absence  o f  t a n g e n t i a l  s t r e s s ,  e q u a l i t y  of  the  norma] s t r e s s  
to  the  e x t e r n a l  p r e s s u r e ,  and the  k i n e m a t i c  c o n d i t i o n ,  a r e  a l l  s a t i s f i e d  a t  t he  f r e e  s u r f a c e :  

sity. 
1989. 
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